

PRU / PRF / PRUT series

Rodless cylinder

MEMO

Please read this safety notice carefully, pay attention to safety item while using this product, in order to prevent injury to human body and damage of property.

Caution for service and Selection

\land Warning

- Make thorough understanding to the characteristic of the compressed air and the application of this product while designing circuit.
- Please use only the fluid stated on the catalog, don't use the fluid other than limited, in order to prevent damage of product and affect the operation safety.
- The air used is compressed air, please note that expandable and unstable pressure will fly out, burst out, or leak.
- The magnetic force of the magnet is very strong, pay attention to the distance of the slide block moving between front and rear base, avoid activated and crashed and injured.
- Please used as per the specification stated on the catalog, exceeding the pressure beyond the specification, temperature and condition will cause poor action and affect the operation safety. Selection of cylinder, load should not exceed allowable value (give allowance).
- For fixing method, do not secure at middle of slide base but both ends.
- For single rod type rod-less cylinder, the fixing o guide rod should be done on both sides; setting of the turn angle of the slide block should be maintained within 1 degree.
- Due to the mechanical design of movement by rod-less cylinder with variation of wobbling, please pay attention to flying objects and possible crash hazard of your limbs, which may result in body injury and mechanical damage and so on; please take precaution upon designing.
- The movable range of rodless cylinder may contact our body and cause injury, should be protected by safety guard to prevent direct contact of body hazard.
- Maintain minimum activating pressure, keep smooth stroke.
- If the fixing face of cylinder is poor, the parallelism of the affect by pressure, the shaft receive uneven force, cause friction resistance increase and affect the stable stroke, so maintain fixed stable and even force receiving.
- Keep the surface of the cylinder tube clean and scratch free on circumference face; if there is damage in cylinder tube will cause poor action, and cause damage of cylinder if there is recession.
- Take the driving mechanism and circuit control system combination into account upon design, avoid residue pressure in circuit, fail to completely positioning and lateral pressurized and other factor, causing high speed fly out of the object. These situations are very possible to cause body injury, limbs crashed, and damage of mechanism. Countermeasure of protective circuit is necessary.
- Avoid direct load on cylinder slide block; poor fixing method cause deflection of cylinder tube and poor action; therefore, it is preferable to rest the load on guide rod, cylinder moving the slide block and move the load, just do the transmission work, it is best design method.

Safety notice / Rodless cylinder caution for application

 Direct load receiving may cause deflection of cylinder tube

Indirect load receiving method, better design

▲ Caution

- The magnet on the cylinder slide base should keep distance from iron plate and magnetic object to prevent the cause of error induction, and should avoid too close to other magnetic related sensor and the range of slide base stroke and induce error induction.
- Avoid fast impact for the buffer device which cause damage due to collision of magnet, the preferable method is to mount hydraulic buffer device at both ends; start from slow motion in testing the installation and rise the speed slowly.
- The emergency stop device for mechanism is essential, in case of malfunction, in addition the protection device, there should have malfunction stop device to prevent damage of equipment or hurt of human body.
- The restart after the emergency stop should confirm the safe position and collision, affect damage of equipment or hurt of human body; there shall have safety precaution countermeasure for restart after the emergency stop upon designing.
- Please don't apply external process to rod-less cylinder to change the profile and structure, causing insufficient strength and structure damage, part damage.
- Please don't enlarge the vent hole of inlet, enlarged Bore size increase rocking speed and inert torque instant impact, lead to structure damage of product and human injury.

Caution for service and maintenance

\land Warning

- Shut off the power switch and air source properly before service and maintenance, confirm that there is no residue pressure in the pipeline and start work after confirming the status is safe.
- Please don't disassemble the rod-less cylinder in discretion, there is strong magnet inside, error disassembling will lead to hazard and cause problem on operation of the product.
- Please don't disassemble the rod-less cylinder in discretion because the margin of cylinder is sharp, error disassembling will lead to hazard and cause problem on operation of the product.

Safety notice

▲ Caution

- The rod-less cylinder is coated with small amount of lubricafor at initial using state, it will decrease after a period of usage, and should be added up with appropriate amount of oil according to actual application condition. Lubricant is essential in high speed moving, limit to use ISO-VG32 lubricant, feed by oil applicator,may cause poor action if stop oiled when it is required.
- When disassembling the connecting object of the cylinder, it shall be tighten at even force, and push by hand to confirm there is no interference and then start to supply air.
- Service and maintenance should be perform regularly as schedule, and confirm the normal operation of following :
 - (1) Is the compressed air supplied stably?
 - (2) Is the front filter and strainer normal?
 - (3) Is the connection portion or piping loosen accompany moving of object? Is the pipe connection portion normal?
 - (4) Is the action condition of the cylinder normal? Is there any delay phenomena and exhaust normal? Any strange noise?
 - (5) Whether the piping system connected to solenoid valve (governor) normal? Terminal start and stop movement normal? Is the load system normal?
 - (6) Is the lubricant feeding system normal? Is the oil amount adjusted properly?

MEMO

Operating specification and Ordering expression

CHELIC PNEUMATIC

O Internal structure

PRU Rodless Cylinder

PRF Rodless Cylinder

PRUT Rodless Cvlinder

MRD Magnetic Rodless Cylinder MRB Magnetic Rodless Cylinder MRX Magnetic

Rodless Cylinder

MRU

Magnetic Rodless Cylinder

MRH Magnetic Rodless

Cylinder

Theoretical force

Unit : kgf

Bore size	Action	Piston area	Air pressure (kgf/cm ²)										
mm		cm ²	1	2	3	4	5	6	7				
Ø16	Push	2.0	—	4	6	8	10	12	14				
Ø20	Push	3.14	_	6.2	9.4	12.5	15.7	18.8	21.9				
Ø25	Push	4.9	—	9	14	19	24	29	34				
Ø32	Push	8.0	_	16	24	32	40	48	56				
Ø40	Push	12.5	—	25	37.5	50	62.5	75	87.5				

🔎 Note : Above are theoretical Data : please take into consideration the frictional resistance and the mechanical efficiency of value should be added calculation before using. (About 70%~80%)

O Specification

Item Bore size Ø25 (mm) Ø16 Ø20 Ø32 Ø40 Operation Double acting Fluid Air 1.5 ~ 7 Pressure range kgf/cm²(kpa) (150~700) Max. service pressure 8 (800) kgf/cm²(kpa) Operating ambient temperature range °C 0~60 Range of service speed 50 ~ 500 mm/sec Lubrication Free Cushion device Pressure cushion Port size M5 G 1/8" G 1/4" Magnet device With magnet

• Standard weight (PRU series)

Bore size	Stroke	The weight for each additional stroke
Ø16	0.25	0.1
Ø20	0.47	0.15
Ø25	0.74	0.197
Ø32	1.62	0.354
Ø40	2.10	0.415
		Unit : kg

O How to order

PRF : Moderate type

3-6.1

Components and Material list

O Internal structure

O Components and Material list

No.	Item	Material	No.	Item	Material
01	Body	Aluminum alloy	15	Bush	Stainless steel
02	Sliding block	Aluminum alloy	16	Belt	Stainless steel
03	Sliding plate	Aluminum alloy	17	Magnet belt	Rubber
04	Cover (right)	Aluminum alloy	18	Piston packing	NBR
05	Cover (left)	Copper	19	Cushion packing	NBR
06	Piston	POM	20	Screw	Medium carbon steel
07	Cushion rod (left)	POM	21	Piston magnet	SCM
08	Cushion rod (right)	POM	22	O-Ring	NBR
09	Block	POM	23	O-Ring	NBR
10	Block	POM	24	O-Ring	NBR
11	Band	NBR	25	O-Ring	NBR
12	Plate	POM	26	Screw	Medium carbon steel
13	Belt	Stainless steel	27	Screw	Medium carbon steel
14	Cushion needle	Copper	28	Screw	Medium carbon steel

• Mounting type

Mounting bracket type

Mounting cover type

 $\ensuremath{\mathfrak{K}}$ It has thread hole in the mounting screw of cover to use, do not take out this screw.

PRU

PRF

PRU / PRF series - Rodless cylinder

Design and Installation reference

Load and Moment allowable

The maximum allowable moment is to calculate the piston of center of gravity.

In general situation, the moment of load can not exceed the range of allowable. If the moment of load is not single direction, its value can not bigger than 1.

> $Mx = Fp \times R_1$ $My = Fp \times R_2$ $Mz = Fp \times R_1$

PRU Rodless Cylinder

PRF Rodless Cylinder

PRUT Rodless Cvlinder

Model	Bore	Stroko	Theoretical	Max. load (N)	Max.	momen	MRD Magnetic	
woder	size (mm)	Stroke (mm)	force in 6 bar	Fp	Mz	Mx	Му	Rodless Cylinder
Â	16	50~1000	121	120	0.5	0.3	4	MRB
. 0	20	50~1000	189	200	1.2	0.8	8	Magnetic
je :	25	50~1500	294	300	3	1	15	Rodless Cylinder
	32	50~1500	482	450	5	2	30	MRX
	40	50~1500	754	750	8	4	60	Magnetic Rodless Cylinder
Â	16	50~1000	121	120	0.5	0.45	4	MRU
A A A A A A A A A A A A A A A A A A A	20	50~1000	189	200	1.2	1.2	8	Magnetic Rodless
Sell	25	50~1500	294	300	3	1.5	15	Cylinder
	32	50~1500	482	450	5	3	30	MRH
S. M.	40	50~1500	754	750	8	6	60	Magnetic Rodless

```
C
etic
ss
Ier
```

T. etic Rodless Cylinder

C Load mass and Collision speed

The cushion of the end of cylinder can be adjusted to make sure it do not cause the structure damage because of the stronger hit.

When operating with a load or speed exceeding the limit line, it should be add cushion to keep normal operating.

O Load mass and Support spacing

For long stroke operation, the cylinder tube may be deflected depending on its own weight and load weight. In such a case, use a side support in the middle section.

External dimension

CHELIC PNEUMATIC

• PRU Ø16 ~ Ø32

Model Bore size	Α	в	С	D	Е	F	G	н	I	J	к	L	м	Ν	0	Р	Q	R	S	т	U
Ø16	65	30	18	45	30	6.4	39	M3×0.5P×9dp	10	18	32	14	76	4.5	48	M4×0.7P×8dp	M5×0.8P	13.4	3.5	4	10
Ø20	80	37	24	55	37	6	48	M4×0.7P×12dp	12	20	40	22	96	4.5	65	M4×0.7P×8dp	G 1/8	17	5	9	18
Ø25	100	42	27	67.5	42	8.7	55.2	M5×0.8P×15dp	16.3	23	50	22	120	5.5	80	M5×0.8P×10dp	G 1/8	18.2	8	9	18
Ø32	125	54	36	88.3	55	9.5	74.6	M6×1P×15dp	18	27	60	25.5	160	7	90	M6×1P×15dp	G 1/4	24	9	11	21

• PRU Ø40

External dimension

CHELIC PNEUMATIC

• PRF Ø16 ~ Ø32

Model Bore size	Α	в	С	D	Е	F	G	н	I	J	κ	L	м	Ν	0	Р	Q	R
Ø16	65	30	18	38	30	6.4	M3x0.5Px9dp	22	16.5	36	69	M4x0.7Px6dp	14	13.4	3.5	M5x0.8p	4	10
Ø20	80	37	24	46	37	6	M4x0.7Px12dp	28	20	50	90	M4x0.7Px6dp	22	17	5	G 1/8	9	18
Ø25	100	42	27	52.5	42	8.7	M5x0.8Px15dp	33	25	65	117	M5x0.8Px8dp	22	18.2	8	G 1/8	9	18
Ø32	125	54	36	66.5	55	9.5	M6x1Px15dp	36	27	90	152	M6x1Px10dp	25.5	24	9	G 1/4	11	21

O PRF Ø40

PRU Rodless Cylinder

PRF Rodless Cylinder

PRUT Rodless Cylinder

MRD Magnetic Rodless Cylinder

MRB Magnetic Rodless Cylinder

MRX Magnetic Rodless Cylinder

MRU Magnetic Rodless Cylinder

MRH

Magnetic Rodless Cylinder

Accessories external dimension

O L type mounting bracket (PRU)

PRU Ø 16 ~ Ø 32

• PRU Ø 40

Model Bore Size	АВ	АН	АТ	AU	AV	SA	TR	υн	ZT
Ø16	3.6	45	1.6	10	4	150	18	26	75
Ø20	4.6	56	1.6	11	5	182	24	35	91
Ø25	5.8	68	2.5	16	6	232	27	39	116
Ø32	6.6	89.8	3	18	8	286	36	50	143
Ø40	9	99	24	12.5	11.5	325	30	68	162.5

O L type mounting bracket (PRF)

• PRF Ø 16 ~ Ø 32

Model Bore size	АВ	АН	АТ	AU	AV	SA	TR	UH	zт
Ø16	3.6	38	1.6	10	4	150	18	26	75
Ø20	4.6	47	1.6	11	5	182	24	35	91
Ø25	5.8	53	2.5	16	6	232	27	39	116
Ø32	6.6	68	3	18	8	286	36	50	143
Ø40	9	82	24	12.5	11.5	325	30	68	162.5

Accessories external dimension

CHELIC PNEUMATIC

• PRF Ø40

4-ØK

O Mounting bracket

16 5.5 PRU Rodless Cylinder

PRF Rodless Cylinder

PRUT Rodless Cylinder

MRD Magnetic Rodless Cylinder

MRB Magnetic Rodless Cylinder

MRX Magnetic Rodless Cylinder

MRU

Magnetic Rodless Cylinder

MRH Magnetic Rodless Cylinder

PRF	series
-----	--------

44 5 28

52.5 5 37

64.5

83 12 55

91.5 12 84

8 42

Ø16

Ø20

Ø25

Ø32

Ø40

53

61.5

78.5

102.5

114.5

25

34

37

44

70

13 2 20 3 10 4.5

13 2 26 3 15 4.5

20

30 4 60 8 40 6.6

32 6 90 8 75 7

3 32 5

Bore Model A B C D E F G H I J K L _ _ _ _ 55

PRF Ø16 ~ Ø32

49 76

57.5 96

72 5

94 160

ш

103.5 150

_

_

55

120

size			-				-			-	
Ø 16	40.5	5	31	49.5	28	13	2	20	3	10	4.5
Ø 20	48.5	5	37	57.5	34	13	2	26	3	15	4.5
Ø 25	60.2	8	42	74.2	37	20	3	32	5	16	5.5
Ø 32	75.7	12	55	95.2	44	30	4	60	8	40	6.6
Ø 40	85.5	12	84	108.5	70	32	6	90	8	75	7

O Cushion device

PRU Ø16 ~ Ø40

F

Bore Model size	Α	в	С	D	Е	F	G	н
Ø16	43	41.9	8	20	22	10	M10×1.0P	37
Ø20	52	51.9	10.5	24.8	24	10	M10×1.0P	37
Ø25	57	57.1	10.5	26.5	26	15	M12×1.0P	37.5
Ø32	69	71.4	11.5	33.9	28	15	M14×1.5P	52
Ø40	80	91.4	18.9	41	34	20	M20×1.5P	53

MEMO

